Assessing strain mapping by electron backscatter diffraction and confocal Raman microscopy using wedge-indented Si.
نویسندگان
چکیده
The accuracy of electron backscatter diffraction (EBSD) and confocal Raman microscopy (CRM) for small-scale strain mapping are assessed using the multi-axial strain field surrounding a wedge indentation in Si as a test vehicle. The strain field is modeled using finite element analysis (FEA) that is adapted to the near-indentation surface profile measured by atomic force microscopy (AFM). The assessment consists of (1) direct experimental comparisons of strain and deformation and (2) comparisons in which the modeled strain field is used as an intermediate step. Direct experimental methods (1) consist of comparisons of surface elevation and gradient measured by AFM and EBSD and of Raman shifts measured and predicted by CRM and EBSD, respectively. Comparisons that utilize the combined FEA-AFM model (2) consist of predictions of distortion, strain, and rotation for comparison with EBSD measurements and predictions of Raman shift for comparison with CRM measurements. For both EBSD and CRM, convolution of measurements in depth-varying strain fields is considered. The interconnected comparisons suggest that EBSD was able to provide an accurate assessment of the wedge indentation deformation field to within the precision of the measurements, approximately 2×10(-4) in strain. CRM was similarly precise, but was limited in accuracy to several times this value.
منابع مشابه
Energy Dissipation Criteria for Surface Contact Damage Evaluation
This chapter presents the energy dissipation approach for analyzing surface contact damages in various materials, including composite materials. As known, surface contact is a very common phenomenon, which can be found in daily life and many scientific and engineering problems. The contact of different bodies can be modeled as indentation. Analysis of indentation and modeling of the deformation...
متن کاملNano-structural Characterization of Post-annealed ZnO Thin Films by X-ray Diffraction and Field Emission Scanning Electron Microscopy
ZnO thin films were deposited on Si(400) substrates by e-beam evaporation technique, and then post-annealed at different annealing temperatures (200-800°C). Dependence of the crystallographic structure, nano-strain, chemical composition and surface physical Morphology of these layers on annealing temperature were studied. The crystallographic structure of films was studied using X-Ray Diffracti...
متن کاملOrientation-distribution mapping of polycrystalline materials by Raman microspectroscopy.
Raman microspectroscopy provides the means to obtain local orientations on polycrystalline materials at the submicrometer level. The present work demonstrates how orientation-distribution maps composed of Raman intensity distributions can be acquired on large areas of several hundreds of square micrometers. A polycrystalline CuInSe2 thin film was used as a model system. The orientation distribu...
متن کاملEffect of Si doping on strain, cracking, and microstructure in GaN thin films grown by metalorganic chemical vapor deposition
The effect of Si doping on the strain and microstructure in GaN films grown on sapphire by metalorganic chemical vapor deposition was investigated. Strain was measured quantitatively by x-ray diffraction, Raman spectroscopy, and wafer curvature techniques. It was found that for a Si concentration of 2310 cm, the threshold for crack formation during film growth was 2.0 mm. Transmission electron ...
متن کاملGrowth, Characterization and Integration of Si/SiGe Heterostructures into TUNFETs
Si/Si1-xGex Heterostructured nanowires are grown by Reduced Pressure-Chemical Vapor Deposition (RP-CVD) using catalyst assisted Vapor Liquid Solid (VLS) and Vapor Solid Solid (VSS) method. We aim to obtain compositional (Si/Si1xGex) and/or doped (p-i-n) heterostructures with abrupt interfaces. The resulting NW heterostructures are structurally characterized using e.g. transmission electron micr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ultramicroscopy
دوره 163 شماره
صفحات -
تاریخ انتشار 2016